
12. LIMIT THEOREMS FOR EXPECTATION

Theorem 46 (Monotone convergence theorem (MCT)). Suppose Xn,X are non-negative r.v.s and Xn ↑ X a.s. Then
E[Xn] ↑ E[X ]. (valid even when E[X ] = +∞).

Theorem 47 (Fatou’s lemma). Let Xn be non-negative r.v.s. Then E[liminfXn]≤ liminfE[Xn].

Theorem 48 (Dominated convergence theorem (DCT)). Let |Xn|≤ Y where Y is a non-negative r.v. with E[Y ] < ∞.
If Xn → X a.s., then, E[|X−n−X |]→ 0 and hence we also get E[Xn]→ E[X ].

Assuming MCT, the other two follow easily. For example, to prove Fatou’s lemma, just define Yn = infn≥k Xn and
observe that Yks increase to liminfXn a.s and hence by MCT E[Yk]→ E[liminfXn]. Since Xn ≥ Yn for each n, we get
liminfE[Xn]≥ liminfE[Yn] = E[liminfXn].

To prove DCT, first note that |Xn|≤ Y and |X |≤ Y a.s. Consider the sequence of non-negative r.v.s 2Y − |Xn−X |
that converges to 2Y a.s. Then, apply Fatou’s lemma to get

E[2Y ] = E[liminf(2Y − |Xn−X |)]≤ liminf E[2Y − |Xn−X |] = E[2Y ]− limsupE[|Xn−X |].
Thus limsupE[|Xn−X |] = 0. Further, |E[Xn]−E[X ]|≤ E[|Xn−X |]→ 0.

13. LEBESGUE INTEGRAL VERSUS RIEMANN INTEGRAL

Consider the probability space ([0,1],B,m) (note that this is the Lebesgue σ-algebra, not Borel!) and a function
f : [0,1]→ R. Let
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be the upper and lower Riemann sums. Then, Ln ≤Un and Un decrease with n while Ln increase. If limUn = limLn,
we say that f is Riemann integrable and this common limit is defined to be the Riemann integral of f . The question
of which functions are indeed Riemann integrable is answered precisely by
Lebesgue’s theorem on Riemann integrals: A bounded function f is Riemann integrable if and only if the set of
discontinuity points has zero Lebesgue outer measure.

Next consider the Lebesgue integral E[ f ]. For this we need f to be Lebesgue measurable in the first place. Clearly
any bounded and measurable function is integrable (why?). Plus, if f is continuous a.e., then f is measurable (why?).
Thus, Riemann integrable functions are also Lebesgue integrable (but not conversely). What about the values of the
two kinds of integrals? Define

gn(x) :=
2n−1

∑
k=0

(
max

k
2n≤x≤ k+1

2n

f (x)

)
1 k

2n≤x≤ k+1
2n

, hn(x) :=
2n−1

∑
k=0

(
min

k
2n≤x≤ k+1

2n

f (x)

)
1 k

2n≤x≤ k+1
2n

so that E[gn] =Un and E[hn] = Ln. Further, gn(x) ↓ f (x) and hn(x) ↑ f (x) at all continuity points of f . By MCT, E[gn]
and E[hn] converge to E[ f ], while by the assumed Riemann integrability Ln and Un converge to

R 1
0 f (x)dx (Riemann

integral). Thus we must have E[ f ] =
R 1

0 f (x)dx.
In short, when a function is Riemann integrable, it is also Lebesgue integrable, and the integrals agree. But there

are functions that are measurable but not a.e. continuous. For example, consider the indicator function of a totally
disconnected set of positive Lebesgue measure (like a Cantor set where an α middle portion is deleted at each stage,
with α sufficiently small). Then at each point of the set, the indicator function is discontinuous. Thus, Lebesgue
integral is more powerful than Riemann integral.
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14. LEBESGUE SPACES:

Fix (Ω,F ,P). For p ≥ 1, define ‖X‖p := E[|X |p]
1
p for those r.v.s for which this number is finite. Then ‖tX‖p =

t‖X‖p for t > 0, and Minkowski’s inequality gives ‖X +Y‖p ≤ ‖X‖p +‖Y‖p for any X and Y . However, ‖X‖p = 0
does not imply X = 0 but only that X = 0 a.s. Thus, ‖ ·‖p is a pseudo norm.

If we introduce the equivalence X ∼ Y if P(X = Y ) = 1, then for p ≥ 1 only ‖ ·‖ p becomes a genuine norm on
the set of equivalence classes of r.v.s for which this quantity is finite (the Lp norm of an equivalence class is just
‖X‖p for any X in the equivalence class). It is known as “Lp-space”. With this norm (and the corresponding metric
‖X −Y‖p, the space Lp becomes a normed vector space. A non-trivial fact (proof left to measure theory class) is
that Lp is a complete under this metric. A normed vector space which is complete under the induced metric is called
a Banach space and Lp spaces are the prime examples.

The most important are the cases p = 1,2,∞. In these cases, (we just write X in place of [X ])

‖X−Y‖1 := E[|X−Y |] ‖X−Y‖2 :=
√

E[|X−Y |2] ‖X−Y‖∞ := inf{t : P(|X−Y | > t) = 0}.

Exercise 49. For p = 1,2,∞, check that ‖X−Y‖p is a metric on the space Lp := {[X ] : ‖X‖p < ∞} (here [X ] denotes
the equivalence class of X under the above equivalence relation).

Especially special is the case p = 2, in which case the norm comes from an inner product 〈[X ], [Y ]〉 := E[XY ]. L2

is a complete inner product space, also known as a Hilbert space. For p (= 2, the Lp norm does not come from an
inner product as ‖ ·‖p does not satisfy the polarization identity ‖X +Y‖2

p +‖X−Y‖2
p = 2‖X‖2

p +2‖Y‖2
p.

15. SOME INEQUALITIES FOR EXPECTATIONS

The following inequalities are very useful. We start with the very general, but intuitively easy to understand
Jensen’s inequality. For this we recall two basic facts about convex functions on R.

Let φ : (a,b)→R be a convex function. Then, (i) φ is continuous. (ii) Given any u ∈R, there is a line in the plane
passing through the point (u,φ(u)) such that the line lies below the graph of φ. If φ is strictly convex, then the only
place where the line and the graph of φ meet, is at the point (u,φ(u)). Proofs for these facts may be found in many
books, eg., Rudin’s “Real and Complex Analysis” (ch. 3).

Lemma 50 (Jensen’s inequality). Let φ : R → R be a convex function. Let X be a r.v on some probability space.
Assume that X and φ(X) both have expectations. Then, φ(EX)≤ E[φ(X)]. The same assertion holds if φ is a convex
function on some interval (a,b) and X takes values in (a,b) a.s.

Proof. Let E[X ] = a. Let y = m(x− a)+ φ(a) be the ‘supporting line’ through (a,φ(a)). Since the line lies below
the graph of φ, we have m(X−a)+φ(a)≤ φ(X), a.s. Take expectations to get φ(a)≤ E[φ(X)]. !
Lemma 51. (a) [Cauchy-Schwarz inequality] If X ,Y are r.v.s on a probability space, then E[XY ]2 ≤ E[X2]E[Y 2].

(b) [Hölder’s inequality] If X ,Y are r.v.s on a probability space, then for any p,q ≥ 1 satisfying p−1 + q−1 = 1,
we have ‖XY‖1 ≤ ‖X‖p‖Y‖q.

Proof. Cauchy-Schwarz is a special case of Hölder with p = q = 2.
The proof of Hölder inequality follows by applying the inequality ap/p+bq/q≥ ab for a,b≥ 0 to a = |X |/‖X‖p

and b = Y/‖Y‖q and taking expectations. The inequality ap/p+bq/q≥ ab is evident by noticing that the rectangle
[0,a]× [0,b] (with area ab) is contained in the union of the region{(x,y) : 0≤ x≤ a, 0≤ y≤ xp−1} (with area ap/p)
and the region {(x,y) : 0≤ y≤ b, 0≤ x≤ yq−1} (with area bq/q) simply because the latter regions are the regions
between the x and y axes (resp.) and curve y = xp−1 which is also the curve x = yq−1 since (p−1)(q−1) = 1. !
Lemma 52 (Minkowski’s inequality). For any p≥ 1, we have ‖X +Y‖p ≤ ‖X‖p +‖Y‖p.

Proof. For the important cases of p = 1,2,∞, we know how to check this (for p = 2, use Cauchy-Schwarz). For
general p, one can get it by applying Hölder to an appropriate pair of functions. We omit details (we might not use
them, actually). !
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